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Analysis of capacity fade in a lithium ion battery
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Abstract

Two parameter estimation methods are presented for online determination of parameter values using a simple charge/discharge model
of a Sony 18650 lithium ion battery. Loss of capacity and resistance increase are both included in the model. The first method is a hybrid
combination of batch data reconciliation and moving-horizon parameter estimation. A discussion on the selection of tuning parameters for this
method based on confidence intervals is included. The second method uses batch data reconciliation followed by application of discrete filtering
of the resulting parameters. These methods are demonstrated using cycling data from an experimental cell with over 1600 charge–discharge
cycles.
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. Introduction and motivation

The overall performance of batteries deteriorates over time
s the system is cycled repeatedly through multiple iterations
f charge and discharge. For high-performance applications

t is useful to have accurate knowledge of the present condi-
ion of the battery as well as the remaining battery life. The
eduction in battery performance can be assumed to mani-
est in two ways: capacity fade display in the reduction in
bility of the battery to store charge and increased area spe-
ific impedance (ASI) the resistance to charge transfer which
educes cell potential.

Given the importance of this information for high perfor-
ance electrochemical systems, significant effort has been
evoted to the development of models that describe the dis-
harge behavior of batteries. The majority of these models
re empirical or semi-empirical at best[1,2], having limited
redictive capability given the strong dependence of cell be-
avior on factors such as temperature and charge/discharge
ycling protocol. However, even models developed using
more mechanistic approach[3], are susceptible to error.
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These models are typically developed using data th
collected under tightly controlled experimental conditio
which simply do not exist in real-world applications. N
ertheless, these models can be regressed to data an
provide an accurate representation of a battery for a
charging/discharging cycles. As is the case for any m
prediction, unknown disturbances and unmodeled phe
ena will inevitably influence the system, leading to the
vergence of the model prediction from the actual bat
performance.

This universal drawback of modeling is typically ov
come in real-world applications (e.g. weather forecas
by periodically updating the parameters of the model to
flect the current state of the system. For a number o
namic systems, this is not a trivial matter. Often it is
ficult to measure these parameter values without dis
ing the system, if it is even possible to measure them
rectly at all. For Li-ion cells, the only method curren
available to directly measure the actual capacity is to
the cycling and physically open the battery in an inert
vironment. Not only is this counterproductive as the
cling is interrupted, but it is impossible for remote ap
cations such as satellite power systems. Therefore, th
great value in being able to determine updated mode
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Nomenclature

aii ith element on the diagonal ofA
an nth auto-regressive coefficient in a digital filter
A parameter covariance matrix in parameter es-

timation
bn nth moving-average coefficient in a digital fil-

ter
bi estimated value of unknown parameterβi
d(k) arbitrary process disturbance at time/cyclek
e(k) error between measured and model-predicted

arbitrary process at time/cyclek; ŷ(k) − y(k)

i current drawn from battery during discharge
(A)

J n × m Jacobian matrix used in parameter es-
timation for the rates of change of thenmea-
surements with respect to themundetermined
parameters

k discrete-time increment or alternatively cycle
number

� number of previous cycles considered in hybrid
estimation algorithm

m number of unknown parameters in a general
parameter estimation

n number of experimental measurements used in
a general parameter estimation

P (k) parameter set for arbitrary process at
time/cyclek

Q battery capacity (A h)
R internal battery resistance ()
s2 measurement covariance found during param-

eter estimation that approximates true covari-
anceσ2

t time (s)
tcutoff time at which experimental system stops dis-

charging based on a cutoff voltage (s)
t(1−α/2) signifance statistic at (1− α) confidence level

found fromStudent’s tdistribution withν de-
grees of freedom

u(k) arbitrary process input at time/cyclek
U empirical correlation between SOC and open

circuit potential of the battery (V)
V experimentally measured battery potential

(V)
V̂ model-predicted battery potential (V)
y(k) arbitrary process measurement at time/cyclek
ŷ(k) model-predicted value of arbitrary process at

time/cyclek
z unit shift operator

Greek symbols

βi general unknown model parameter to be found
by estimation

ΓQ move-weighting penalty on prior values ofQ
in hybrid estimation algorithm

ΓR move-weighting penalty on prior values ofR
in hybrid estimation algorithm

θ state-of-charge (SOC)
θcutoff SOC of experimental system when discharging

stops based on a cutoff voltage
ν number of degrees of freedom in a parameter

estimation, calculated byn − m

σ2 true process measurement covariance that is
approximated bys2 in parameter estimation

Φ objective function used in hybrid estimation al-
gorithm

ωc cutoff frequency for digital low-pass filter de-
sign (Hz)

rameters in a minimally invasive manner, and preferably
online.

In the following work, a new estimation algorithm — com-
bining elements of both batch estimation and online moving-
horizon estimation[4–7] — is proposed to keep the model
parameters updated to the current operating state of the bat-
tery on a cycle-to-cycle basis. Based on the most recent
discharge curve of a cell, capacity and resistance are cal-
culated through the minimization of an error function that
depends on the mismatch between the model and the data
from the present cycle as well as a weighted penalty for the
deviation of the present parameters from prior values. The
addition of the deviation terms smoothes the apparent pa-
rameter drift of the system and the weightings are chosen
to balance between the smoothness of the parameter drift
and the achievement of the smallest possible model/battery
data mismatch for a given cycle. The proposed algorithm is
demonstrated on 1600+ cycles of data from a Sony 18650
Li-ion cell. The results presented here are presented based
on several different tunings of theparameters of the algo-
rithm that should not to be confused with the model param-
eters. As an alternative method, the model parameters are
obtained using successive batch estimations for each cycle
and then filtered using a discrete, recursive low-pass filter.
The results from the filtering analysis are compared to those
from the new algorithm, and analogies are drawn between
t

data,
i dy-
n the
s ane-
o ca-
p be-
t the
n algo-
r

hem.
Regardless of the method chosen to analyze the

t is apparent that the parameters do not obey simple
amics that can be predicted a priori. Despite being
ame type of cells running the same protocol simult
usly under identical conditions, the dynamics of the
acity fade and increased resistance differ significantly

ween the two individual experiments, further motivating
eed for this online, soft-sensing, parameter estimation
ithm.
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2. Methodology

The proposed algorithm is devised as a method to observe
slow drifts in characteristics of Li-ion batteries. While batch
estimations could be performed for each cycle, the values of
the parameters obtained in this manner are liable to fluctuate
rapidly in a relatively uncorrelated manner. However, it is ex-
pected that these model characteristics should vary smoothly
and gradually, barring the occurrence of a fault in the sys-
tem. Therefore, the batch estimations are performed using an
objective function that incorporates parameter values from
the previous cycle(s) to correlate and smooth the drift of the
parameters.

2.1. Experimental system

Two Sony 18650 Li-ion batteries were used to collect data
over multiple charge–discharge cycles. These batteries were
rated for 1.4 A h. The charging protocol was as follows: con-
stant current was applied at 1 A until the battery reached
4.2 V, then constant voltage was applied at 4.2 V until cur-
rent dropped to 50 mA. The discharge protocol was as fol-
lows: batteries were discharged at a constant 1 C rate (1.4 A)
then stopped when the voltage reached 2.8 V. The discharged
battery then waited for the charger to become available, typ-
i in.
W the
r sion
o

d in
F kard
M ies
e rom
t neral
P otely
t were
a

2.2. Dynamic battery discharge model

The Matlab® and Simulink® simulation environments
were used to implement this estimation routine. A model of
the process is implemented in Simulink®. A simple two-
parameter model of the battery is defined by the following
equations:

dθ

dt
= − i(t)

Q
(1)

U(θ) =
9∑

j=0

ajθ
j (2)

V̂ (t) = U(θ(t)) − Ri(t) (3)

whereθ(t) is a quantity called state-of-charge (SOC) that
varies between 0 and 1, representing fully discharged and
fully charged, respectively. The time-dependent behavior of
θ(t) is given by Eq. (1). Battery capacityQ is assumed to
be a constant parameter during the course of a single bat-
tery discharge. For the data sets used in this study,i(t), or
current load on the battery, was held constant. Thus,θ(t) de-
creases linearly over time, but may decease at different rates
a -
o tial
d . (
H -
t
a

a ty of
a the
b .4 A)
t rge of
t n a

of batt
cally allowing the cell to rest at open circuit for 5–30 m
hile results from both batteries were very similar, only

esults from the first battery were included in the final ver
f this work.

A schematic of the data collection system is provide
ig. 1. Charging was accomplished using a Hewlett Pac
odel 6632B DC Power Supply. An Agilent Technolog
lectronic load, Model 6060B, was used to draw current f

he batteries on discharge. A National Instruments Ge
urpose Interface Bus (GPIB) was used to control rem

he load and power supply. Data acquisition and control
ccomplished using LabVIEW® software version 6.1.

Fig. 1. Schematic layout
s the model capacityQ changes. An empirically fit, ninth
rder polynomial,U(θ), maps the SOC to a voltage poten
ischarge curve being produced by the battery (see Eq2)).
owever, the battery itself has a resistive load,R, so the ex

ernally available voltage,̂V , is reduced by the quantityRi(t)
s shown in Eq.(3).

The model parameters from Eq.(2) are determined from
normal discharge of the battery system under a varie

ssumptions. It is assumed that the initial capacity of
attery is as stated, 1.4 A h. At the 1 C discharge rate (1

he system never reaches an SOC of 0, since discha
he system is stopped at a cutoff voltage of 2.8 V. Give

ery charge discharge system.
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constant discharge rate,i, the SOC at cutoff is given by

θcutoff = 1 − itcutoff

Q
(4)

Assuming the initial system resistanceR is 0.3, the result-
ing voltage profileV̂ (t) for a single discharge at a 1 C rate
can then be fit to a high-order polynomial. Using the first
discharge cycle for the battery, the following relationship is
found:

U(θ) = 4 − 251θ + 266θ2 − 1352θ3 + 4148θ4 − 8.073θ5

+ 9946θ6 − 7472θ73107θ8 − 543θ9 (5)

Note that this model is not based on the open circuit potential.
Also, the polynomial is never updated over the course of
the estimation procedure. The values forQ andR will be
determined in the estimation procedures.

2.3. Hybrid estimation methodology

The proposed estimation algorithm can be viewed as an
extension of traditional online parameter estimation. First,
the known input values for thekth cycle,u(k), the current, are
used to force the battery to charge and discharge. Unmea-
sured disturbances,d(k), influence the output of the battery in
c vari-
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2.3.1. Hybrid estimation implementation
The online estimation routine consisted of a nonlinear op-

timization at each analyzed cycle solved by the unconstrained
optimization algorithmfminsearch(Nelder-Mead) provided
by Matlab®. The objective function used was:

Φ(Qi,Ri) =
∫ tf
t0

(V̂ − V )2 dt

tf − t0
+ ΓQ

�∑
j=0

2−j(Qi − Qi−j)
2

+ΓR

�∑
j=0

2−j(Ri − Ri−j)
2 (6)

whereQi andRi are the model parameters being fit for cycle
i, andV̂ andVare the battery modeled and experimental volt-
ages, respectively. The initial and final times of the data set
aret0 andtf . Since the data is sampled at discrete intervals,
the data is linearly interpolated and the continuous value of
the model — data error is integrated by Simulink.Qi−j and
Ri−j are the values ofQ andR from the (i − j)th cycle, and
ΓQ andΓR are the relative weightings of the move-penalty
terms of the objective function.ΓQ andΓR are the magni-
tudes of the weights for the move penalty for the (i − 1)th
cycle, and the weighting for each cycle prior to that is re-
duced by a factor of 2. There are two components to this
objective function: the integral term measuring the ability of
t nalize
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yclek. These disturbances could include temperature
tion, unmodeled dynamics, or fault occurrences in the

ery. Disturbances affect the measured voltage profile fo
ischarge cycle,y(k), but do not affect the modeled outp

ˆ (k). The model discharge profile also depends on the cu
odel parameters,P (k), whereP (k) = [Q(k) R(k)]T . The er-

or between the battery and the model,e(k), is then passe
o the optimization routine to determine the best param
alues for the current cycle.

The optimization routine attempts to minimize a weigh
ombination of the mean-squared error (MSE) for the ba
nd a penalty based on the squared value of deviations
revious parameter values. For this application, MSE is
en as the model — data error metric over a simpler form
s sum-squared error (SSE). Since the length of a disc
ycle is not constant, but rather is determined when the
em reaches the cutoff voltage, the number of data poin
ach cycle is variable. Hence, the value of an error m
uch as SSE is not directly comparable between cycl
ifferent length. However, the averaging process involve
SE eliminates the discrepancies between cycles of diff

ength, making it a more appropriate metric for this syst
The minimization of the objective function is acco

lished by adjusting the values ofP (k). Each cost functio
valuation of the optimization returns a new set of value
(k) to the model, which then recalculates ˆy(k) for the cycle
nce the optimization terminates, the final values forP (k)are
utput and also saved for use in subsequent estimation

ions for later cycles. The algorithm increments itself to
ext cycle number and repeats the entire process.
he model to reproduce the data and the terms that pe
arge deviations in parameter values between runs. It is
ssary to choose theΓQ andΓR terms carefully so that the
o not dominate the model error term in Eq.(6). The ratio
etweenΓQ andΓR is also important, allowing both para
ters to have similar relative impact even thoughQandRare
f different magnitudes.

In addition to the weighting parametersΓQ andΓR, an-
ther adjustable parameter for tuning algorithm perform

s �, the size of the weighting horizon in number of cyc
he case where� equals 0 is a special case, since the m
enalty terms of the objective function become 0, and
bjective function simply becomes an unconstrained m
quared error (MSE) for the present discharge cycle. D
he geometrically decreasing weights on move penalti
arger values of�, the incremental effects of increasing� to
alues larger than 4 are essentially negligible.

.3.2. Parameter confidence intervals from hybrid
stimation

In many cases, it is useful to obtain confidence inter
or regressed parameters as a measure of the reliabil
he results. A straightforward statistical technique exist
omputing these intervals for simple linear least square
uming that all errors are normally distributed. A procedu
lso available for unconstrained nonlinear least squares
er the same error assumptions), but it is significantly m

nvolved than linear least squares. Given the unconvent
bjective function used in the hybrid estimation, it would
ear difficult to derive such a procedure for this new met
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However, by slightly reformulating the model-data error cal-
culation and considering the parameter drifts as additional
measurements, it will be shown that a method exits that can
be used to compute confidence intervals.

Constantinides and Mostoufi[8] discuss the calculation of
confidence intervals from nonlinear least squares regressions
in which more than one type of data is used. In this case,
parameters are chosen to minimize a weighted SSE objec-
tive function. For the general case withv different types of
measurementsYj, the objective function to be minimized is
given by

Φ =
v∑

j=1

wj(Ŷj − Yj)
T(Ŷj − Yj) (7)

In the case where the variance for each type of measure-
mentσ2

j is known, then the weighting factorswj can be com-

puted directly and are inversely proportional toσ2
j . However,

it is not uncommon for the variances to be unknown, so one
must estimate values.

Now, consider the case of the battery system. In order to
use this approach, the error between the battery and model
will need to be handled as SSE instead of MSE, despite the
previously mentioned advantages of MSE. It also appears
that there is only one measurement: the voltage in the bat-
t d in
t d
a d
u

Y

T

Φ

w

w
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p wn
a ents”
r s are
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(

with a similar expression for theRi term. If this is truly valid,
then the objective function further simplifies to

Φi =
n∑

k=1

(V̂k − V )2 + ΓQ(Qi − Qi−1)2 + ΓR(Ri − Ri−1)2

(12)

which is nearly identical to the objective function proposed
in this work for the case where� = 1. In a future case where
a model or proposed model of the time-dependent drift ofQ
andR is known (such as a square root dependence on time),
then that model could alternately be used to find values for
̂(Qi − Qi−1) and ̂(Ri − Ri−1). Confidence intervals for esti-

mated parameters are given by Constantinides and Mostoufi
in the form

bi − t(1−α/2)s
√
aii ≤ βi ≤ bi + t(1−α/2)s

√
aii (13)

wherebi is the value of the parameterβi obtained by mini-
mizingΦ, t(1−α/2) the significance statistic for a confidence
level of (1− α), s the square root of the approximate vari-
ance of the error andaii theith element of the diagonal of the
parameter covariance matrix. Values oft(1−α/2) can either be
found by lookup in statistical tables of theStudent’s tdistri-
bution or direct computation for a given number of degrees
o
t eters
b that
o e
m

σ

F

A

w

J

f -
m e of
b g
t ins

s

ery. However, the move-penalty terms that are include
he original objective function of Eq.(6) can be considere
dditional measurements. In the case where� = 1, there en
p being three measurements:

1 = V, Y2 = (Qi − Qi−1), Y3 = (Ri − Ri−1)

(8)

hus, the objective function becomes

i =
n∑

k=1

(V̂k − Vk) + ΓQ[ ̂(Qi − Qi−1) − (Qi − Qi−1)]2

+ΓR[ ̂(Ri − Ri−1) − (Ri − Ri−1)]2 (9)

here

1 = 1, w2 = ΓQ, w3 = ΓR (10)

oting thatw1 is assumed to be 1 and the arbitrary weigh
arametersΓQ andΓR are chosen, because nothing is kno
priori about the variance of the two “pseudo-measurem

elative to the measurement error. Since no assumption
ade as to how the parametersQ andRdrift with time, one
ypothesis is to consider thatQ andRare Gaussian rando
ariables and that the values ofQi andRi found in each cycl
re samples from those distributions. In this case, the m
f the cycle-to-cycle drift ofQ is given by

̂Qi − Qi−1) = E[Qi − Qi−1] = 0 (11)
f freedomν and the desired significance level.ν is given by
he number of measurements less the number of param
eing fit. Whenν becomes large, this statistic approaches
f the normal distribution. Values forsare obtained from th
inimum value of the objective function:

2 ≈ s2 = Φ(b)

ν
(14)

inally,

=

 v∑
j=1

wjJ
T
j Jj




−1

(15)

here

j =




∂Ŷj,1

∂b1
· · · ∂Ŷj,1

∂bm
...

...
...

∂Ŷj,n

∂b1
· · · ∂Ŷj,n

∂bm




(16)

or the case where there aren instances of thejth measure
ent andm parameters being fit. Now consider the cas
attery discharge. The calculation ofs is very simple. Usin

he simplified objective function for the problem, one obta

2 = Φi(Qi,Ri)

ν
= Φi(Qi,Ri)

n + 2 − 2
= Φi(Qi,Ri)

n
(17)



234 A.T. Stamps et al. / Journal of Power Sources 150 (2005) 229–239

where again,n is the number of voltage measurements. Mea-
surementsY2 andY3 have very simple Jacobians to compute:

JT
2 J2 = [ 1 0]T[ 1 0] =

[
1 0

0 0

]
(18)

JT
3 J3 = [ 0 1]T[ 0 1] =

[
0 0

0 1

]
(19)

The Jacobian for the voltage measurements is somewhat more
involved. The voltage model for constant-load discharge is
given by Eqs.(1)–(3). Therefore, the Jacobian of the voltage
is given by

J1 =




∂V̂

∂θ

∣∣∣∣
θ=θ(t1)

∂θ

∂Q

∣∣∣∣
t=t1

∂V̂

∂R

∣∣∣∣
t=t1

...
...

∂V̂

∂θ

∣∣∣∣
θ=θ(tn)

∂θ

∂Q

∣∣∣∣
t=tn

∂V̂

∂R

∣∣∣∣
t=tn




(20)

which simplifies somewhat to

J




∂V̂

∂θ

∣∣∣∣
θ=θ(t1)

i ti

Q2 −i

. .
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2.4. Digital filtering

A second analysis method is proposed where the model
parameters are calculated at each cycle using simple batch
estimation techniques. Then a discrete, low-pass filter is ap-
plied to the values to remove the high-frequency variations.
Due to its simplicity, a second-order Butterworth filter (IIR)
was constructed using the Matlab® Signal Processing Tool-
box. When developing a low-pass filter, a crossover frequency
must be supplied. For a discrete (digital) filter, it is gener-
ally sufficient to specify the ratio between the cutoff fre-
quency and the sampling rate. The battery system is not truly
a discrete-time system, since the data points, i.e. estimated
parameter values, do not correspond to sequential, evenly
spaced samples. Instead, each estimate corresponds to an en-
tire discharge cycle, which does not have a fixed duration.
However, for the purposes of this analysis, the cycle-to-cycle
frequency is arbitrarily assumed to be 1 Hz. Therefore, a fil-
ter designed with a cutoff frequency of 0.01 Hz will reject
dynamics of parameter changes that occur over fewer than
100 cycles. In other words, the filtered values for capacity
and resistance should only exhibit dynamics that occur over
at least 100 cycles.

3. Results
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∂V̂

∂θ

∣∣∣∣
θ=θ(tn)

i tn

Q2 −i


(21)

Using the definitions forJ1...3, the value forA is obtained

= [
JT

1 J1 + ΓQJ
T
2 J2 + ΓRJ

T
3 J3

]−1

=







n∑
k=1

(
∂V̂i

∂Q

)2 n∑
k=1

∂V̂i

∂Q
∂V̂i

∂R

n∑
k=1

∂V̂i

∂Q
∂V̂i

∂R

n∑
k=1

(
∂V̂i

∂R

)2


 +

[
ΓQ 0

0 ΓR

]



−1

(22)

Using these equations, it is now possible to compute
onfidence intervals. Note thatΓQ andΓR both influence th
onfidence intervals by their inclusion inA. SinceΓQ andΓR

re not based on actual variances, it must be emphasize
xcessively large values of these parameters will yield
ower confidence intervals than what may actually be vali
ractice, this procedure calculates confidence intervals
imilar to those that would be obtained if the move-pen
erms were not incorporated. As seen inFig. 4, the confidenc
ange begins decreasing with increasingΓQ andΓR. Since
arger values ofΓQ andΓR correspond to smaller variances
xpected drifts inQandR, it is expected that one would ha
higher degree of confidence in parameters that are k

o drift less. Nevertheless, values ofΓQ andΓR should be
hosen judiciously.
t

Several different studies were performed to gauge the
ormance of the proposed hybrid estimation algorithm.
f the main assumptions in this problem is that the pa
ters drift slowly enough that they can be held constan

he duration of a single cycle. If this assumption is valid,
mprobable that the actual parameter value will have cha
ignificantly from one cycle to the next. Therefore, it is
irable to tune the algorithm to produce parameter pro
ith reduced high-frequency “chatter” in the signal, m

ike a low-pass filter. However, if the move-penalty weig
re too high, the parameter values will lag and the err

he resulting model could be unacceptable. The studie
ussed herein consider the effects of changing move-pe
eights and varying the length of the move-penalty hori
hese results are compared to results obtained by digit

ering. From these studies, recommendations are mad
ppropriate magnitudes of algorithm tuning parameters
lter specifications.

.1. Effects of hybrid estimation algorithm tuning
arameters

One experiment was performed where the move-pe
eightsΓQ and ΓR were varied while the move horizo

ength� was fixed at 2. The results of this experiment
resented inFig. 2. As was expected, the smallest weig
ΓQ = 2 andΓR = 4) produced results that were extrem
imilar to the unweighted case. The estimated valuesQ
ndRexhibit a very high variation over an underlying ste



A.T. Stamps et al. / Journal of Power Sources 150 (2005) 229–239 235

Fig. 2. Capacity fade and resistance change with various values ofΓQ andΓR. Note thatΓR = 2ΓQ. The move horizon length parameter� was fixed at 2.

decrease and increase, respectively. It is doubtful that the ac-
tual condition of the battery changes as rapidly as predicted.
Alternately, the case with the largest weights (ΓQ = 50 and
ΓR = 100) yields parameter trends that are very smooth
and gradual, but appear to lag significantly behind the un-
weighted results. This too is unacceptable. Finally, a reason-
able compromise weighting appears to be about (ΓQ = 10
andΓR = 20). In this case, the highest frequency noise com-

ponents are not present, but the estimated values still converge
to the long-term trends of the unweighted case rapidly.

A second study was conducted varying the move hori-
zon length,�, while maintaining the move-penalty weights
at the values determined previously to be most reasonable
(ΓQ = 10 andΓR = 20). As seen inFig. 3, the effect of the
increasing horizon length was to smooth out the predicted
value curve at the expense of convergence rate, similar to

F e estim
Γ

ig. 3. Capacity fade and resistance change using various values of� in th

R = 20.

ation. The move-penalty weighting parameters were fixed atΓQ = 10 and
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Fig. 4. 95% Confidence intervals forQ andR over 1600 charge–discharge
cycles.

increasing the weighting factorsΓQ andΓR. Fig. 3also illus-
trates that the differential effect between� = 4 and� = 2 is
approximately equivalent to that between� = 2 and� = 1.
With the weighting scheme currently implemented, the ef-
fects of setting� larger than 4 are essentially negligible. For
the particular values of the weighting parameters used in this
study, a value of� = 2 yields the best blend of smoothing the
profiles without adding excess lag and unduly reducing the
accuracy of the model.

Fig. 4
Finally, there is no utility in adjusting the algorithm pa-

rametersΓQ, ΓR, and� to obtain smooth parameter trends
if it produces unacceptable error between the model and the
battery voltage. Therefore, the hybrid estimation was per-
formed using the ideal parameter values determined from the
previous two experiments. Three discharge cycles were se-
lected from early, mid, and late in the data: cycles 1, 800, and
1425, respectively. The comparison between the data and the
model using the estimated parameters is presented inFig. 5.
Clearly, the agreement is quite good, particularly for cycles 1
and 800. Although the results for cycle 1425 were not quite
as accurate, they are still encouraging, considering the sim-
plistic empirical nature of the underlying model.

3.2. Digital filtering

of uti-
l and
p time.
I ffec-
t ail-
a nd
S rs
w used
t tions
o ecur-

Fig. 5. Model fidelity for the battery for three cycles{1,800,1425} using
parameters obtained through hybrid estimation and low-pass filtering.

sive digital filter (IIR) is given by

ŷ(k) = −a1ŷ(k − 1) − a2ŷ(k − 2) + b0y(k) + b1y(k − 1)

+ b2y(k − 2) (23)

whereŷ is the filtered value of the quantityy andk is the
discrete-time unit. The signs on the coefficients are defined in
this manner, because the digital filter can also be equivalently
represented in the following discrete-time transfer function:

ŷ(z) = b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2 y(z) (24)

wherez is the unit shift operator. The results are shown in
Fig. 6.

In Fig. 6, the cutoff frequencies used for the various fil-
ters were{0.001,0.01,0.1} Hz for the capacities,Q, and
{0.0005,0.005,0.05} Hz for the resistances,R. The filter co-
efficients for theQvalues are listed inTable 1, while those for
Rare listed inTable 2. Based on the behavior of these filters,
cutoff frequencies of approximately 10−2 Hz are appropriate
for this system.

To ensure that parameter values obtained by the filters
were still valid for the system, these filtered parameter val-
ues were used to generate model output for cycles 1, 800,
and 1425, as was done for the hybrid estimation results. The
m ut in

T
F

ω utter-
w

Filtering has been suggested as an alternate means
izing noisy parameter estimates for individual cycles
roducing smooth trajectories for parameter values over

n practice, it has proved to be a very simple and e
ive method for accomplishing this task. Using readily av
ble tools such as Matlab® Signal Processing Toolbox a
imulink®, a number of Butterworth low-pass digital filte
ere synthesized with various crossover frequencies and

o process model parameter values obtained from estima
n single cycles. The general form of the second-order r
odel output was compared to the experimental outp

able 1
ilter coefficients (as defined in Eq. (23)) used for filteringQ

Coefficient ωc = 0.001 ωc = 0.01 ωc = 0.1

a1 −1.991e + 00 −1.911e + 00 −1.143e + 00
a2 9.912e − 01 9.150e − 01 4.128e − 01
b0 9.826e − 06 9.447e − 04 6.745e − 02
b1 1.965e − 05 1.889e − 03 1.349e − 01
b2 9.826e − 06 9.447e − 04 6.745e − 02

c is design cutoff frequency in Hz. Values are obtained using the B
orth filter tool in the Matlab Signal Processing Toolbox.
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Fig. 6. Capacity fade and resistance change in the battery smoothed by three digital Butterworth filters.

Table 2
Filter coefficients (as defined in Eq. (23)) used for filteringR

Coefficient ωc = 0.0005 ωc = 0.005 ωc = 0.05

a1 −1.996e + 00 −1.956e + 00 −1.561e + 00
a2 9.956e − 01 9.565e − 01 6.413e − 01
b0 2.462e − 06 2.414e − 04 2.008e − 02
b1 4.924e − 06 4.827e − 04 4.016e − 02
b2 2.462e − 06 2.414e − 04 2.008e − 02

ωc is design cutoff frequency in Hz. Values are obtained using the Butter-
worth filter tool in the Matlab Signal Processing Toolbox.

Fig. 5. There appears to be good agreement between the
model using filtered parameters and experiment over all cy-
cles. Moreover, the parameters obtained using this method
appear to offer comparable performance to those obtained
using the hybrid estimation technique.

4. Discussion

It is well known that capacity of electrochemical cells
decreases with time[1,3]. A battery that has been recharged
100 times cannot store as much power as a brand new battery.
Consequently, it was expected that the estimation algorithm
would show the capacity parameter in the model studied de-
creasing as the cycle number increased. Additionally, due to
irreversible reactions, the internal resistance of a battery will
increase with the number of cycles. Both of these experi-
mentally observed trends were captured by the tested hybrid
estimation algorithm and discrete filtering of batch estimation
results.

The new algorithm was designed as a hybrid between two
more traditional types of estimation: offline batch estima-

tion and online recursive estimation. Each estimation so-
lution found is a result of the solution of a batch estima-
tion problem. However, knowledge gained from solutions
of the problem at earlier cycles is used to weight the ob-
jective function used in the current estimation, thereby in-
creasing the confidence in the parameter estimates, more akin
to recursive estimation. This approach assumes that the dy-
namics of the parameters being estimated are slow with re-
spect to the length of each data cycle. Hence, they are as-
sumed constant for the duration of a single cycle, but can
vary from cycle-to-cycle. See[9] for a discussion of cate-
gories of adjustable parameters. The hybridization of batch
and recursive estimation is a novel approach to data recon-
ciliation.

One typical downfall of batch estimation for use in on-
line applications is that the algorithms used are typically not
fast enough to achieve a solution within one time interval.
This technique mitigates this issue, since a solution is com-
puted once per cycle and not once per sample period. The
battery system used to generate data for this study has a sam-
ple time of 1 s, but a complete cycle is about 50 min long.
The solution times of the estimations are approximately 15 s,
making it impossible to solve this type of problem at each
time step, but very practical on a cycle-to-cycle basis. This
technique should be applicable to a number of batch pro-
cesses. Any process that operates in repeated, discrete cycles
o ben-
e

thm
h con-
v ement
u non-
t ture
n the order of several minutes or higher may be able to
fit.

The theoretical mathematical properties of this algori
ave not yet been analyzed. Investigation of the stability,
ergence, robustness in the presence of plant/measur
ncertainty, or any other desirable property would be a

rivial exercise at best. It is certainly an area open for fu
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research. This algorithm has provided excellent performance
in the application problem studied, despite the absence of
rigorous proofs of stability or convergence. The absence of
such proofs surrounding an algorithm should not be the sole
criterion for its dismissal; Allg̈ower et al.[7] state that the
extended Kalman filter (EKF) does not have a lot of strong
theory supporting its use, but has nevertheless proved use-
ful in a number of applications. The EKF has also been used
previously for online estimation of battery capacity fade[10–
12]. However, it will not work for the battery model used in
this discussion, since this model is notobservablein the tra-
ditional dynamical systems context, a strict requirement of
the Kalman filter and EKF.Observabilityfor linear systems
is discussed in both[13,14] (among others), with a signif-
icant discussion of the Kalman filter included in[13]. The
concept of observability is extended for nonlinear systems
in [15]. In addition to observability, the extended Kalman
filter requires linearization of the nonlinear dynamic model
and estimates of the state and measurement noise characteris-
tics. Depending on the system, these requirements can prove
unwieldy. Additionally, the EKF and other online recursive
estimation techniques compute updates at each sample point.
For a system such as the battery studied here, sampling occurs
frequently (on the order of seconds), whereas the parameter
dynamics of interest occur on a much longer time scale (on
the order of days, weeks, or months). Consequently, even if
i ially
m us,
t l and
a ding
m able
i

for
d hem-
i ple
t pa-
r ting
e Ad-
d to
f it is
a ject t
s low
w ered
e urrent
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digital filtering techniques offer the user the ability to moni-
tor the long-term condition of the battery while minimizing
the noise attributable to cycle-to-cycle variation. More tradi-
tional approaches for online parameter tracking, particularly
the extended Kalman filter, are impractical for this type of ap-
plication given the orders of magnitude difference between
sampling interval and the time scales of parameter drift. Ad-
ditionally, the EKF is precluded for this particular application
since the dynamic battery model used is not observable. Fi-
nally, results from the hybrid estimation method can be used
under certain conditions to compute confidence intervals for
the unknown parametersQ andR, if a quantitative measure
of reliability is desired.
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